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The task: Entity Alignment



The Task: Entity Alignment
Entity alignment is the task of linking entities with the same 
real-world identity from different knowledge graphs (KGs).
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Why is Entity Alignment important?

Novel

Monogatari (story) 

Love story 

Royal family story 

Realistic novel 

Ancient literature

Query: (The Tale of Genji, Genre, ?e)



Why is Entity Alignment important?
Database merge, e.g. Product & E-commerce graphs



Status quo: current methods



Status quo: Embedding-based methods

f



Challenge: Knowledge Graphs are sparse

[Yang+, EMNLP-IJCNLP 2019]

entity nodes

typed relations

attributes

descriptions

Solution: exploit auxiliary information in knowledge graphs

……



Challenges remain

• Performance is still unsatisfactory 

• On DBP15k, Hits@1 ranges from 50% - 60% 
depending on the language pairs


• Relies on a large seed dictionary (as supervision) 

• For DBP15k, a 4.5k seed dictionary is used, i.e. 30% 
nodes of the whole graph are annotated for training



Method: Vision as a pivot



Motivation
Images are widely available in knowledge graphs.



Motivation

• Essential elements to KGs, very 
informative


• Verified by crowd (accurate and no 
ambiguity)


• Invariant to languages / schemata 
of the KGs



Motivation
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Method: Multi-modal KG embeddings
Jointly embed (1) graph structures + (2) relations + (3) attributes + (4) images.

Born:  … 
Citizenship: … 
Years active: … 
Debut … 
….

GCN FC layer

topological features 
(affinity matrix)

relation features 
(one-hot encodings)

attribute features 
(one-hot encodings)

visual features 

(RGB matrix)

FC layer CNN (ResNet152)

GCN FC layer

multi-modal KG representations

concatenation



Method: Alignment learning

Modality-specific alignment + joint alignment:

Neighbouring Component Analysis loss [Liu+, AAAI 2020]:

ℒ =
1
N

N

∑
i=1 ( 1

α
log(1 + ∑

m≠i

eαSmi) +
1
α

log(1 + ∑
n≠i

eαSin) − log(1 + βSii))
push negative pairs away pull positive pairs together

ℒJoint =
n

∑
i

ℒi + ℒMulti-modal

apply to features of each modality apply to the concatenated feature



Method: Unsupervised setting
Induce visual seed alignment:
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Method: Iterative learning

visual seed dictionary

Supervised training

model 1.0

model 1.1=

…… ……

unaligned 
entities

aligned 
entities

Induce new (highly 
confident) links

Continue 
supervised training

Induce more links

model 1.2, 1.3, 1.4 …



Experimental Results



Two settings

• Semi-supervised setting 

• 4.5k ground truth label available 


• Iterative Learning is used to expand the label set


• Unsupervised setting 

• no ground truth label available


• Iterative Learning is used to expand the label set



Semi-supervised setting: DBP15k
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Comparing EVA (green) with the best baselines, Hits@1 is reported:



Semi-supervised setting: DWY15k-DW
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Unsupervised setting
Comparing unsupervised performance with different #visual seeds: 
(Results reported on DBP15k.)



Ablation study: which modality matters the most?

(Results are reported on DBP15k, FR->EN)

full model

w/o relations

w/o attributes

w/o images

w/o graph structure

Hits@1
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Qualitative analysis: long-tail entities benefit from images the most
Entity frequency in KGs follow long-tailed distribution. 

As an example: we plot #appearances of 100 randomly sampled entities from DBP15k (FR-EN):



Qualitative analysis: long-tail entities benefit from images the most

DegSum(es, et) := deg(es) + deg(et)

(Results are reported on DBP15k, FR->EN)



Thanks for watching!

Contact: fl399@cam.ac.uk

 
Code & data:  https://github.com/cambridgeltl/eva

Acknowledgement:  several slides are borrowed from: 

https://cogcomp.seas.upenn.edu/page/tutorial.202002/handout/3-mrrl.pdf
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