Visual Pivoting for (Unsupervised) Entity Alignment

Fangyu Liu¹, Muhao Chen^{2,3}, Dan Roth³ & Nigel Collier¹

Language Technology Lab, TAL, University of Cambridge, UK
Viterbi School of Engineering, University of Southern California, USA
Department of Computer and Information Science, University of Pennsylvania, USA

Outline

- The task: Entity Alignment
- Status quo: Current methods and challenges
- Method: Vision as a pivot
- Experimental results

The task: Entity Alignment

The Task: Entity Alignment

Entity alignment is the task of linking **entities** with the same real-world identity from different knowledge graphs (KGs).

Why is Entity Alignment important? Query: (The Tale of Genji, Genre, ?e)

Why is Entity Alignment important? Database merge, e.g. Product & E-commerce graphs

Status quo: current methods

Status quo: Embedding-based methods

Challenge: Knowledge Graphs are sparse Solution: exploit auxiliary information in knowledge graphs

[Yang+, EMNLP-IJCNLP 2019]

Challenges remain

- Performance is still unsatisfactory
 - depending on the language pairs

On DBP15k, Hits@1 ranges from 50% - 60%

Relies on a large seed dictionary (as supervision)

• For DBP15k, a 4.5k seed dictionary is used, i.e. 30% nodes of the whole graph are annotated for training

Method: Vision as a pivot

Images are widely available in knowledge graphs.

Cite this page

tions	Create account	Log in		
rch W	Q			
oc				
i an	3			
20	2010			

Johnson in March 2013

- Essential elements to KGs, very informative
- Verified by crowd (accurate and no ambiguity)
- Invariant to languages / schemata of the KGs

multi-modal KG representations

Method: Alignment learning Neighbouring Component Analysis loss [Liu+, AAAI 2020]:

$$\mathscr{L} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{\alpha} \log \left(1 + \sum_{m \neq i} e^{\alpha \mathbf{S}_{mi}} \right) + \frac{1}{\alpha} \log \left(1 + \sum_{n \neq i} e^{\alpha \mathbf{S}_{in}} \right) - \log \left(1 + \beta \mathbf{S}_{ii} \right) \right)$$

push negative pairs away

Modality-specific alignment + joint alignment:

apply to features of each modality

pull positive pairs together

apply to the concatenated feature

Method: Unsupervised setting

Induce visual seed alignment:

Images from English DBpedia

Images from Japanese DBpedia

			SINE MORIBUS		0.9
I CONTRACTOR	0.9	0.2	0.1	0.2	0.8
	0.2	0.7	0.1	0.5	Iniversity of Pennsylvania Iniversity of Pennsylvania O.7
Penn	0.2	0.0	0.8	0.0	
UNIVERSITY of PENNSYLVANIA	0.1	0.1	0.2	0.2	0.5

Experimental Results

Two settings

- Semi-supervised setting
 - <u>4.5k ground truth label available</u>
- Unsupervised setting
 - <u>no ground truth label available</u>

Iterative Learning is used to expand the label set

Iterative Learning is used to expand the label set

Semi-supervised setting: DBP15k

Comparing EVA (green) with the best baselines, Hits@1 is reported:

Without Iterative learning

Semi-supervised setting: DWY15k-DW

Comparing EVA (green) with the best baselines:

Unsupervised setting

Comparing unsupervised performance with different #visual seeds: (Results reported on DBP15k.)

Ablation study: which modality matters the most?

(Results are reported on DBP15k, FR->EN)

Qualitative analysis: long-tail entities benefit from images the most

Entity frequency in KGs follow long-tailed distribution. As an example: we plot #appearances of 100 randomly sampled entities from DBP15k (FR-EN):

Qualitative analysis: long-tail entities benefit from images the most

Quantiles of degree sum

(Results are reported on DBP15k, FR->EN)

Thanks for watching!

Code & data: <u>https://github.com/cambridgeltl/eva</u> Contact: <u>fl399@cam.ac.uk</u>

Acknowledgement: several slides are borrowed from: <u>https://cogcomp.seas.upenn.edu/page/tutorial.202002/handout/3-mrrl.pdf</u>