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The task: Entity Alignment



The Task: Entity Alignment

Entity alignment is the task of linking entities with the same
real-world identity from different knowledge graphs (KGs).
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Why is Entity Alignment important?
Query: (The Tale of Geniji, Genre, ?e)
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Why is Entity Alignment important?

Database merge, e.g. Product & E-commerce graphs
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Status quo: current methods



Status quo: Embedding-based methods




Challenge: Knowledge Graphs are sparse
Solution: exploit auxiliary information in knowledge graphs
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Challenges remain

 Performance is still unsatisfactory

 On DBP15k, Hits@1 ranges from 50% - 60%
depending on the language pairs

* Relies on a large seed dictionary (as supervision)

 For DBP15k, a 4.5k seed dictionary is used, i.e. 30%
nodes of the whole graph are annotated for training



Method: Vision as a pivot



Motivation

Images are widely available in knowledge graphs.
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Motivation
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Motivation
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Motivation
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Method: Multi-modal KG embeddings

Jointly embed (1) graph structures + + (3) attributes + (4) images.

¢ Born: ...
PN Citizenship: ...
o ® Years active: ...
Debut ...
O
topological features
(affinity matrix)

attribute features visual features
(one-hot encodings) (RGB matrix)

relation features
(one-hot encodings)

FC layer

concatenation

multi-modal KG representations



Method: Alignment learning
Neighbouring Component Analysis loss [Liu+, AAAI 2020]:

push negative pairs away pull positive pairs together

Modality-specific alignment + joint alignment:

gJoint — Z Z gMuIti—modaI

apply to features of each modality  apply to the concatenated feature



Method: Unsupervised setting

Induce visual seed alignment:

Images from Japanese DBpedia

Images from English DBpedia




Method: lterative learning

Supervised training '6\‘
20

model 1.0

Induce new (highly
confident) links

Continue model 1.1

supervised training

Induce more links

\b model 1.2, 1.3, 1.4 ...



Experimental Results




Two settings

 Semi-supervised setting

* 4.5k ground truth label available

* lterative Learning Is used to expand the label set

 Unsupervised setting

* no ground truth label available

* lterative Learning is used to expand the label set



Semi-supervised setting: DBP15k

Comparing EVA (green) with the best baselines, Hits@1 is reported:

FR->EN JA->EN ZH->EN FR->EN JA->EN ZH->EN

Without lterative learning With Iterative learning



Semi-supervised setting: DWY15k-DW

Comparing EVA (green) with the best baselines:
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Unsupervised setting

Comparing unsupervised performance with different #visual seeds:
(Results reported on DBP15k.)
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Ablation study: which modality matters the most?

full model
w/o relations
w/o attributes
w/0 images

w/o graph structure

0 20 40 60 80
Hits@1

(Results are reported on DBP15k, FR->EN)



Qualitative analysis: long-tail entities benefit from images the most

Entity frequency in KGs follow long-tailed distribution.
As an example: we plot #appearances of 100 randomly sampled entities from DBP15k (FR-EN):
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Qualitative analysis: long-tail entities benefit from images the most

DegSum(e,, e,) := deg(e,) + deg(e,)
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Thanks for watching!

Code & data: https://github.com/cambridgeltl/eva
Contact: fI399@cam.ac.uk

Acknowledgement: several slides are borrowed from:
https://cogcomp.seas.upenn.edu/page/tutorial.202002/handout/3-mrrl.pdf
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