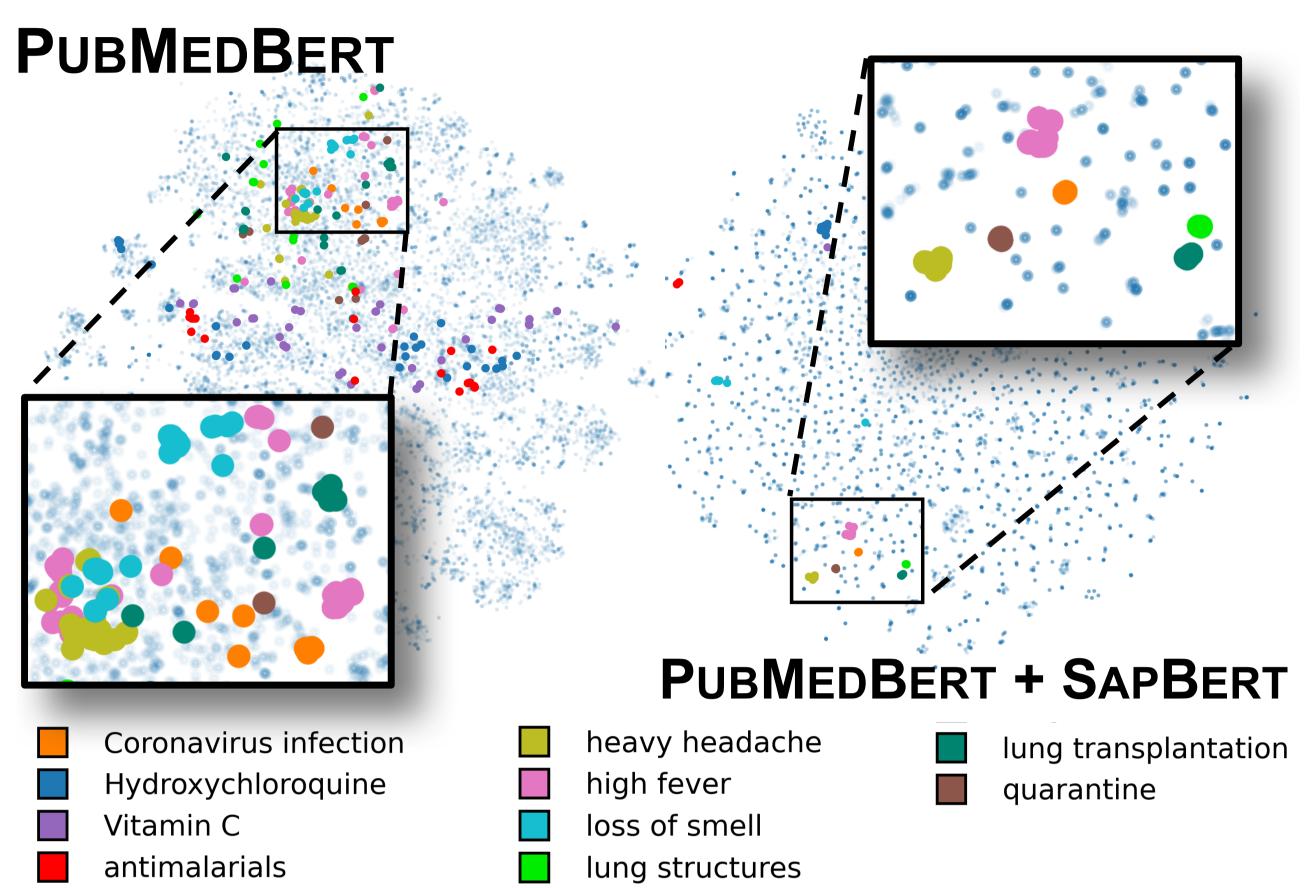


UNIVERSITYOF UNIVERSITYOF CAMBRIDGE





# **0** Study object: biomedical entities

What is a biomedical entity?

• a single word (e.g. *fever*)

• a compound (e.g. *SARS-COV-2*)

• a phrase (e.g. *abnormal retinal vascular development*)

## **| Challenge: heterogeneous naming**

Biomedical names referring to the same concept have drastically different surface forms:

•*Hydroxychloroquine* 

• Oxichlorochine (alternative spelling)

- •*HCQ* (social media)
- •*Plaquenil* (drug name)
- . . . . . .

This is a major challenge for MLM-style pretraining. How do we cope this?

**2 Pretraining resource: UMLS (a gigantic KG)** UMLS is the largest interlingua of biomedical ontologies, containing a comprehensive collection of biomed-

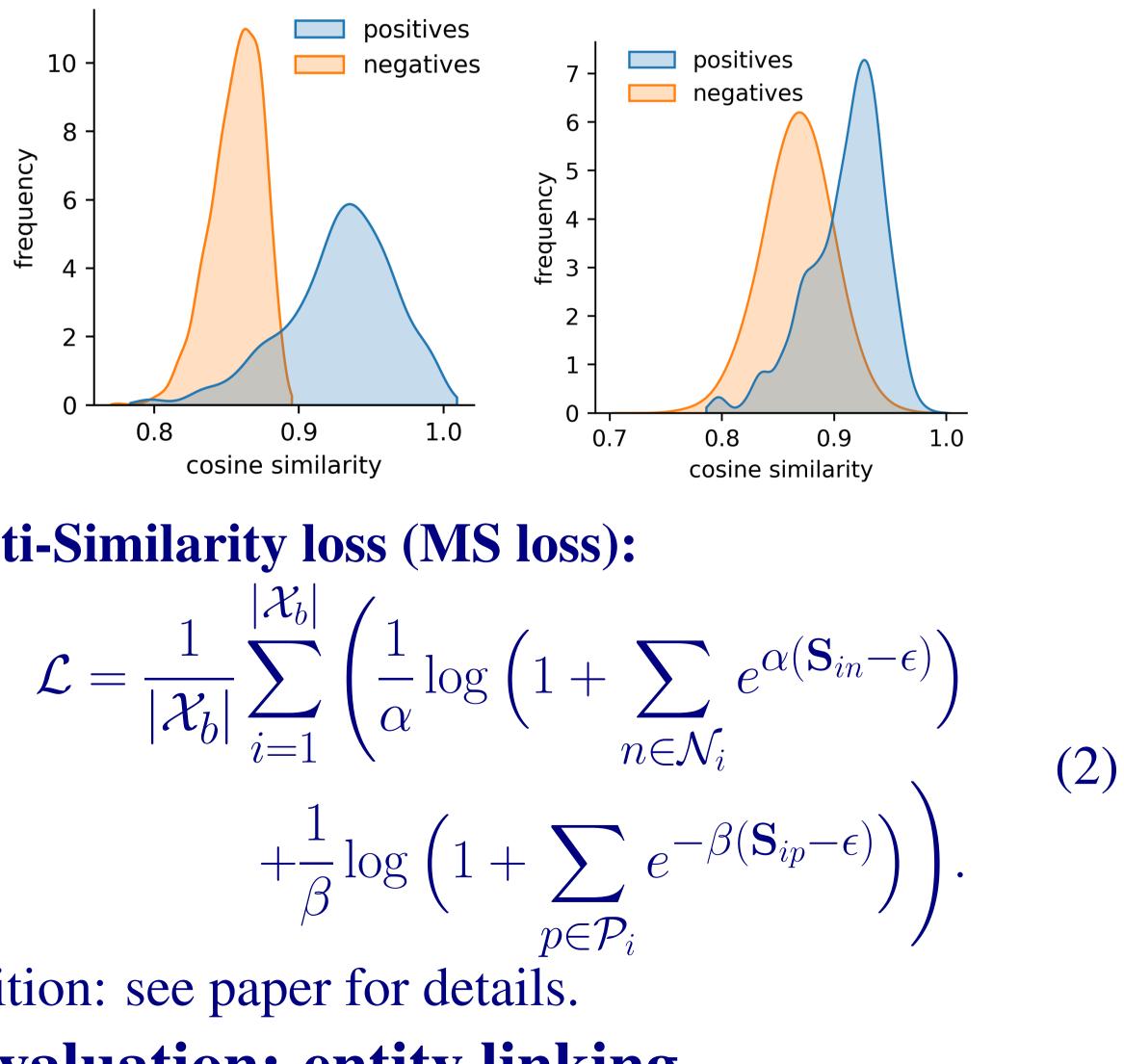
ical synonyms in various forms. Some stats: 4M+ concepts and 10M+ synonyms, stemming from over 150 controlled vocabularies. We design a metric learning

# **Self-alignment Pretraining for Biomedical Entity Representations** Fangyu Liu<sup>1</sup>, Ehsan Shareghi<sup>1,2</sup>, Zaiqiao Meng<sup>1</sup>, Marco Basaldella<sup>1</sup>, Nigel Collier<sup>1</sup> <sup>1</sup>University of Cambridge, UK <sup>2</sup>University College London, UK

framework that self-aligns synonym representations belonging to the same UMLS concept. **3 Method: self-alignment pretraining** The goal of the self-alignment is to learn a function  $f(\cdot;\theta) : \mathcal{X} \to \mathbb{R}^d$  s.t. the similarity  $\langle f(x_i), f(x_j) \rangle$  is high if  $x_i, x_j$  are synonyms and low otherwise. A sampling procedure selects the informative pairs of training samples and uses them in the pairwise metric learning loss function (introduced below).

## **Online hard pairs mining:**

 $\|f(x_a) - f(x_p)\|_2 < \|f(x_a) - f(x_n)\|_2 + \lambda.$  (1) Intuition: most of *Hydroxychloroquine*'s variants are easy: Hydroxychlorochin, Hydroxychloroquine (substance), Hidroxicloroquina and etc., but a few can be very hard: *Plaquenil* and *HCQ*. This step forces the model to focus only on the informative examples. Shown below: cosine similarity of pos./neg. pairs before (left) and after (right) applying online hard mining.



**Multi-Similarity loss (MS loss):** 

$$\mathcal{L} = \frac{1}{|\mathcal{X}_b|} \sum_{i=1}^{|\mathcal{X}_b|} \left( \frac{1}{\alpha} \log \left( 1 + \frac{1}{\alpha} \log \left$$

Intuition: see paper for details. **4 Evaluation: entity linking** 

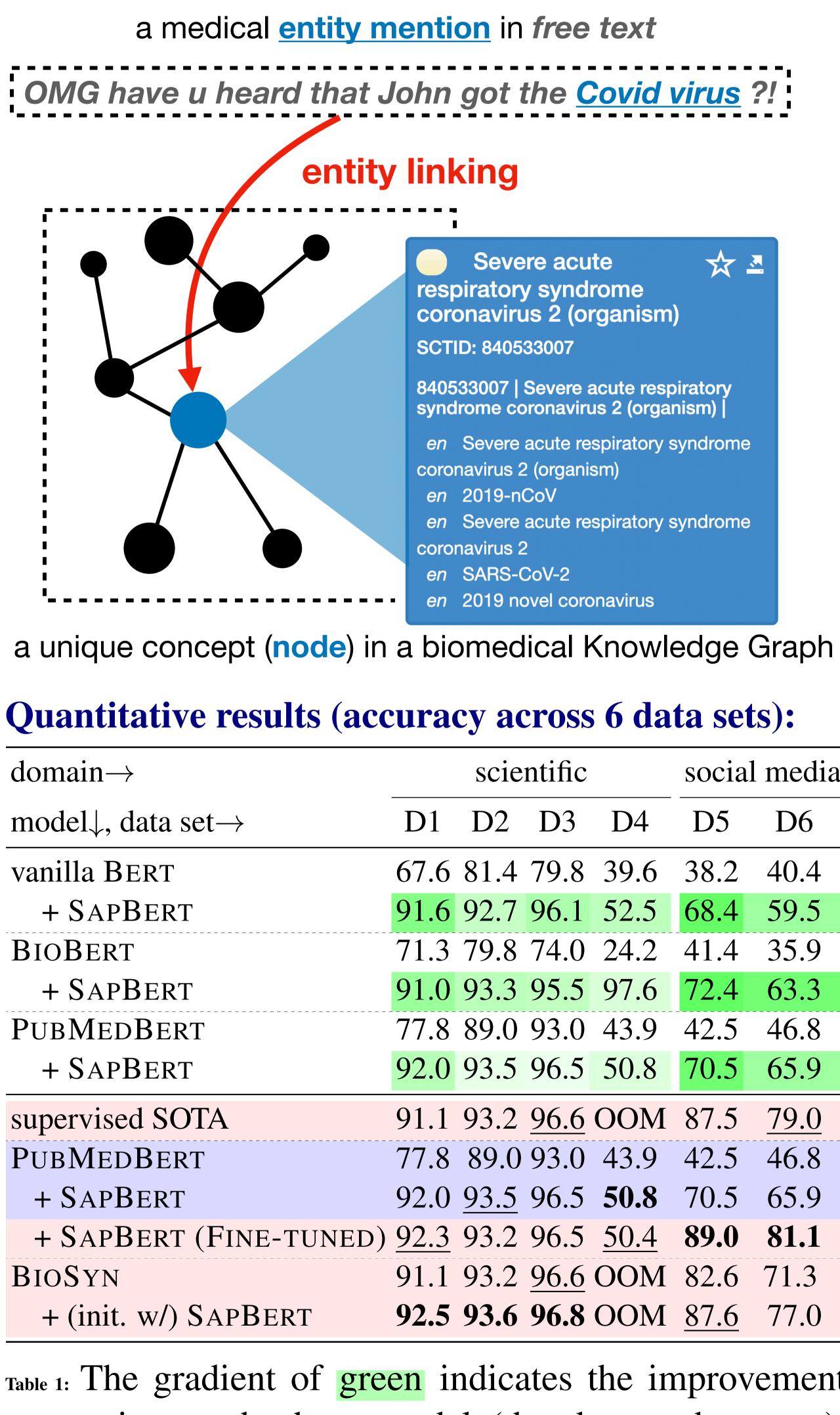


Table 1: The gradient of green indicates the improvement comparing to the base model (the deeper the more). Blue and red denote unsupervised and supervised models. **Bold** and underline denote the best and second best results in the column.



| scientific  |             |             |             | social media |             |
|-------------|-------------|-------------|-------------|--------------|-------------|
| D1          | D2          | D3          | D4          | D5           | D6          |
| 67.6        | 81.4        | 79.8        | 39.6        | 38.2         | 40.4        |
| 91.6        | 92.7        | 96.1        | 52.5        | 68.4         | 59.5        |
| 71.3        | 79.8        | 74.0        | 24.2        | 41.4         | 35.9        |
| 91.0        | 93.3        | 95.5        | 97.6        | 72.4         | 63.3        |
| 77.8        | 89.0        | 93.0        | 43.9        | 42.5         | 46.8        |
| 92.0        | 93.5        | 96.5        | 50.8        | 70.5         | 65.9        |
| 91.1        | 93.2        | <u>96.6</u> | OOM         | 87.5         | <u>79.0</u> |
| 77.8        | 89.0        | 93.0        | 43.9        | 42.5         | 46.8        |
| 92.0        | <u>93.5</u> | 96.5        | 50.8        | 70.5         | 65.9        |
| <u>92.3</u> | 93.2        | 96.5        | <u>50.4</u> | 89.0         | 81.1        |
| 91.1        | 93.2        | <u>96.6</u> | OOM         | 82.6         | 71.3        |
| 92.5        | 93.6        | 96.8        | OOM         | <u>87.6</u>  | 77.0        |