Visually Grounded Cross-Lingual Transfer Learning
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Figure 1: Grounding multilingual concepts with vision as the shared modality.

The Task: Bidirectional Text-Image Re-
trieval. Given an 1mage, the model re-
trieves the most descriptive caption; or
given a caption, the model selects the most
descriptive image.

The Basic Model: Visual-Semantic Em-
beddings (VSE). VSE bridges language
and vision by jointly optimizing and align-
ing semantic embeddings (from texts) and
visual embeddings (from i1mages), aiming
that texts/images with similar semantics are
close to each other 1n the embedding space.
Our Idea: Grounding Multilingual Con-
cepts with Vision. As vision 1s univer-
sal, multilingual texts would be grounded
by consistent visual signals extracted from
images which helps to transport knowledge
across languages. We propose a language
space transformation embedded 1nside neu-

ral networks, addressing transter learning

under continuous word embeddings.
2 Model Details

First, we train a language transtormation matrix M
called TRANSLATOR by applying SVD and RCSLS
[2]. Then, we embed M 1n the pipeline of standard
VSE training.
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rigure 2: QVETrview of our proposed method.
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3 Results

Dataset. We use a self-collected very large-scale
news 1mage-caption dataset containing 350,204 de
and 178,270 f£r samples.

Three Configurations. To demonstrate how Trans-
lator functions exactly, we experiment three proto-
cls on the text branch:

o ['S: fr subword embeddings [1] + text encoder
(randomly 1nitialized);

e I']. fr subword embeddings [1] + Translator (ran-
domly 1nitialized) + text encoder (1nitialized with
de weights);

e /2. £fr subword embeddings [1] + Translator (ini-
tialized with SVD+RCSLS) + text encoder (1nitial-
1zed with de weights).

R@1 - text to image : R@5 - text to image

R@10 - text to image _

rigure 3: PlOttINg recalls (y axis) against number of f r training ex-
amples (x axis). First row 1s text—1mage R@1, R@5, R@10
respectively; second row 1s image—text R@ 1, R@5, R@10.
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