Mirror-BERT: Transforming Pretrained Language Models into Universal Text Encoders

Fangyu Liu, Ivan Vulić, Anna Korhonen, Nigel Collier

Language Technology Lab, University of Cambridge, UK

Motivation

- Off-the-shelf pretrained language models (PLMs) such as BERT/RoBERTa are not effective universal text encoders.
- Downstream task data (e.g. NLI, paraphrasing, sentence similarity) are needed for finetuning a good universal text encoder.

ſ	Model	Avg.	
	Avg. GloVe embeddings	61.32	
	Avg. BERT embeddings	54.81	off_the
	BERT_CLS-vector	29.19	
	InferSent - Glove	65.01	
	Universal Sentence Encoder	71.22	
Ì	SBERT-NLI-base	74.89	text en
	SBERT-NLI-large	76.55	on tasi
Ì	SRoBERTa-NLI-base	74.21	INLI, pa
	SRoBERTa-NLI-large	76.68	

Figure 1: Table from (Reimers & Gurevych, 2019): on the task of Semantic Textual Similarity, off-the-shelf BERT performs worse than text encoders tuned on task data and even GloVe word embeddings.

RQ: How do we close the gap *without labelled data*? In this work we propose *Mirror-BERT*, which can transform a given PLM into a powerful word, phrase, or sentence encoder, usually matching the performance of supervised encoders.

2 Method: Self-Supervised Learning

- Step 1: given a randomly sampled sequence x_i (e.g. a raw sentence from Wikipedia), we replicate it and get an identical string \overline{x}_i .
- Step 2 (optional): randomly replace a span of certain length in \overline{x}_i with [MASK].
- Step 3: send x_i and \overline{x}_i to the same PLM separately and get their representations $f(x_i)$ and $f(\overline{x}_i)$.

-shelf BERT

ncoders tuned k data (e.g. araphrase)

• Step 4: Leverage the infoNCE loss (Eq. (1)) to pull $f(x_i)$ and $f(\overline{x_i})$ together with respect to other features

dist(f(x1), f(x1)) < dist(f(x1/x1), f(x2/x3/...)) Figure 2: The same text sequence can be observed from two additional "views": 1) by performing random masking in the input space, and/or 2) by applying dropout (inside the BERT/RoBERTa PLM) in the feature space, yielding identity-based (i.e., "mirrored") positive examples for contrastive-fine-tuning.

Intuition: The random span masking and dropout layers inside BERT/RoBERTa serve as data augmentations. Essentially, we inject two inductive biases: (i) masking parts of an input sentence, humans can usually reconstruct its semantics, then so should the models; (ii) dropping a small subset of neurons or representation dimensions, the embeddings should not drift too much.

3 Experiments

$$\frac{(x_i)(x_j)/(\tau)}{(x_i), f(x_j))/\tau}.$$
 (1)

Lexical-level Tasks:

lang. \rightarrow	EN	FR	ET	AR	ZH	RU	ES	PL	avg.
fastText	.434	.560	.447	.409	.428	.435	.488	.396	.450
BERT	.267	.020	.106	.220	.398	.202	.177	.217	.201
+ Mirror	.556	.621	.308	.538	.639	.365	.296	.444	.471

Table 1: Word similarity evaluation on Multi-SimLex.

Sentence-level Tasks:

dataset \rightarrow	STS12	STS13	STS14	STS15	STS16	STS-b	SICK-R	avg.
SBERT	.719	<u>.774</u>	.742	.799	<u>.747</u>	<u>.774</u>	.721	<u>.754</u>
RoBERTa*	.134	.126	.124	.203	.224	.129	.320	.180
+ Mirror	.646	.818	<u>.734</u>	.802	.782	.787	.703	<u>.753</u>

Table 2: English Semantic Textual Similarity benchmark results.

4 Discussions

Observation: more data don't help.

input size Figure 3: The impact of the number of fine-tuning "mirrored" examples (x-axis) on the task performance (y-axis).

Learning new knowledge or exposing available knowledge? Seems to be the latter.

model	ρ
fastText	.434
BERT	.267
+ Mirror	.556
+ Mirror (random string, lr 5e-5	5).481

Table 3: Running Mirror-BERT with a set of 'zero-semantics' random strings. Evaluation is conducted on Multi-SimLex (EN).

UNIVERSITY OF CAMBRIDGE