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1 Motivation

o Off-the-shelf pretrained language models (PLMs) such
as BERT/RoBERTa are not effective universal text en-
coders.

 Downstream task data (e.g. NLI, paraphrasing, sen-
tence similarity) are needed for finetuning a good uni-
versal text encoder.
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Figure 1: 1able from (Reimers & Gurevych, 2019): on the task of Se-
mantic Textual Similarity, off-the-shelt BERT performs worse than
text encoders tuned on task data and even GloVe word embeddings.

RQ: How do we close the gap without labelled data’?

In this work we propose Mirror-BERT, which can trans-
form a given PLM 1nto a powerful word, phrase, or sen-
tence encoder, usually matching the performance of su-
pervised encoders.

2 Method: Self-Supervised Learning

e Step 1: given a randomly sampled sequence z; (e.g. a
raw sentence from Wikipedia), we replicate 1t and get
an 1dentical string ;.

e Step 2 (optional): randomly replace a span of certain
length 1n 7; with [MASK].

e Step 3: send z; and ¥, to the same PLLM separately and
get their representations f(x;) and f(x;).

o Step 4: Leverage the infoNCE loss (Eq. (1)) to pull

f(x;) and f(x;) together with respect to other features
in the mini-batch (i.e. f(z;) and f(Z;) where j # 7).
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Figure 2: 1 h€ same text sequence can be observed from two additional
“views”: 1) by performing random masking in the input space,
and/or 2) by applying dropout (inside the BERT/RoBERTa PLLM)
in the feature space, yielding identity-based (1.e., “mirrored™) posi-
tive examples for contrastive-fine-tuning.

Intuition: The random span masking and dropout lay-
ers inside BERT/RoBERTa serve as data augmentations.
Essentially, we 1nject two inductive biases: (1) masking
parts of an 1nput sentence, humans can usually recon-
struct 1ts semantics, then so should the models; (11) drop-
ping a small subset of neurons or representation dimen-
sions, the embeddings should not drift too much.

3 Experiments

Lexical-level Tasks:
lang.—+ EN FR

ET AR ZH RU ES
fastText .434 .560 .447 .409 .428 .435 .488 .396 .450

PL avg.

BERT  .267 .020 .106 .220 .398 .202 .177 .217 .201
+ Mirror .556 .621 .308 .538 .639 .365 .296 .444 471

Table 1: Word stmilarity evaluation on Multi-SimlLex.

Sentence-level Tasks:
dataset—  STS12 STS13 STS14 STS15 STS16 STS-b SICK-R avg.
SBERT J19 774 742 799 747 774 7121 754

RoBERTax .134 126 .124 203 224 129 320 .180
+ Mirror 646 818 .734 802 .782 787 .703 .753

mable 2: English Semantic Textual Similarity benchmark results.

4 Discussions
Observation: more data don’t help.
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Figure 3: 1 he 1mpact of the number of fine-tuning “mirrored” examples
(r-axis) on the task performance (y-axis).

Learning new Kknowledge or exposing available
knowledge? Seems to be the latter.
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mable 3: Running Mirror-BERT with a set of ‘zero-semantics’ random
strings. Evaluation 1s conducted on Multi-SimLex (EN).



