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Abstract

Pretrained Masked Language Models (MLMs)
have revolutionised NLP in recent years. How-
ever, previous work has indicated that off-the-
shelf MLMs are not effective as universal lex-
ical or sentence encoders without further task-
specific fine-tuning on NLI, sentence similar-
ity, or paraphrasing tasks using annotated task
data. In this work, we demonstrate that it is
possible to turn MLMs into effective univer-
sal lexical and sentence encoders even with-
out any additional data and without any su-
pervision. We propose an extremely simple,
fast and effective contrastive learning tech-
nique, termed Mirror-BERT, which converts
MLMs (e.g., BERT and RoBERTa) into such
encoders in less than a minute without any
additional external knowledge. Mirror-BERT
relies on fully identical or slightly modified
string pairs as positive (i.e., synonymous) fine-
tuning examples, and aims to maximise their
similarity during “identity fine-tuning”. We
report huge gains over off-the-shelf MLMs
with Mirror-BERT in both lexical-level and
sentence-level tasks, across different domains
and different languages. Notably, in the stan-
dard sentence semantic similarity (STS) tasks,
our self-supervised Mirror-BERT model even
matches the performance of the task-tuned
Sentence-BERT models from prior work. Fi-
nally, we delve deeper into the inner workings
of MLMs, and suggest some evidence on why
this simple approach can yield effective uni-
veral lexical and sentence encoders.

1 Introduction

Transfer learning with pretrained Masked Lan-
guage Models (MLMs) such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) has been
extremely successful in NLP, offering unmatched
performance in a large number of NLP tasks (Wang
et al., 2019). Despite the wealth of semantic knowl-
edge stored in the MLMs (Rogers et al., 2020), they
do not produce high-quality lexical and sentence
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Figure 1: Illustration of the main concepts behind the
proposed self-supervised Mirror-BERT method. The
same text sequence can be observed from two addi-
tional “views” by: 1) performing random masking in
the input space, and/or 2) by applying dropout (inside
the BERT/RoBERTa MLM) in the feature space, yield-
ing identity-based (i.e., “mirrored”) positive examples
for fine-tuning. A contrastive learning objective is then
applied to encourage such “mirrored” positive pairs to
obtain more similar representations in the embedding
space relatively to negative pairs.

embeddings when used off-the-shelf, without fur-
ther task-specific fine-tuning (Feng et al., 2020).
In fact, previous work has shown that their perfor-
mance is sometimes even below static word embed-
dings and specialised sentence encoders (Cer et al.,
2018) in lexical and sentence-level semantic sim-
ilarity tasks (Reimers and Gurevych, 2019; Vulié
et al., 2020b; Litschko et al., 2021).

In order to address this gap, recent work has
trained dual-encoder networks on labelled external
resources to convert MLMs into universal language
encoders. Most notably, Sentence-BERT (Reimers
and Gurevych, 2019) further trains BERT and
RoBERTa on Natural Language Inference (NLI)
(Bowman et al., 2015; Williams et al., 2018) and



sentence similarity data (Cer et al., 2017) to ob-
tain high-quality universal sentence embeddings.
Recently, SapBERT (Liu et al., 2020) self-aligns
phrasal representations of the same meaning using
synonyms extracted from the UMLS (Bodenreider,
2004), a large biomedical knowledge base, obtain-
ing lexical embeddings in the biomedical domain
that reach state-of-the-art (SotA) performance in
biomedical entity linking tasks. However, both
Sentence-BERT and SapBERT require annotated
(i.e., human-labelled) data as external knowledge:
it is used to instruct the model to produce simi-
lar representations for text sequences (e.g., words,
phrases, sentences) of similar/identical meanings.

In this paper, we fully dispose of any human su-
pervision, demonstrating that transforming MLMs
into universal language encoders can be achieved
without external data. We propose a fine-tuning
framework termed Mirror-BERT, which simply re-
lies on duplicating and slightly augmenting the
existing text input (or their representations) for the
conversion, and demonstrate that it is possible to
learn universal lexical and sentence encoders with
such “mirrored” input data through self-supervision
(see Fig. 1). The proposed Mirror-BERT frame-
work is also extremely efficient: the whole MLM
transformation can be completed in less than one
minute on two 2080Ti GPUs. This finding further
confirms a general hypothesis from prior work (Liu
et al., 2020; Ben-Zaken et al., 2020; Glavas and
Vulié, 2020) that fine-tuning exposes the wealth of
(semantic) knowledge stored in the MLMs for a
particular application. In this case in particular, we
demonstrate that the Mirror-BERT procedure can
rewire the MLMs to serve as universal language
encoders even without any external supervision.

We further show that data augmentation in both
input space and feature space are key to the success
of Mirror-BERT, and they provide a synergistic
effect. Even feeding fully identical strings to the
MLMs still substantially improves performance in
semantic similarity tasks.

Contributions. 1) We propose a completely self-
supervised approach that can quickly transform
pretrained MLMs into capable universal lexical
and sentence encoders, greatly outperforming off-
the-shelf MLMs in similarity tasks across different
languages and domains. 2) We investigate the ra-
tionales behind why Mirror-BERT works at all,
pointing out the impact of data augmentation in the
input space as well as in the feature space.

2  Mirror-BERT: Methodology

Mirror-BERT consists of three main parts, de-
scribed in what follows. First, we create positive
pairs by duplicating the input text (§2.1). We then
further process the positive pairs by simple data
augmentation operating either on the input text or
on the feature map inside the model (§2.2). Finally,
we apply standard contrastive learning to encour-
age the base model to cluster the texts belonging to
the same class (i.e., positives) while pushing away
the negatives (§2.3).

2.1 Training Data through Self-Duplication

The key to the success of dual-network represen-
tation learning (Henderson et al., 2019; Reimers
and Gurevych, 2019; Humeau et al., 2020; Liu
et al., 2020, inter alia) is the construction of posi-
tive and negative pairs. While negative pairs can be
easily obtained from randomly sampled texts, pos-
itive pairs usually need to be manually annotated.
In practice, they are extracted from labelled task
data (e.g., NLI) or knowledge bases that store rela-
tions such as synonymy or hypernymy (e.g., PPDB
(Pavlick et al., 2015), BabelNet (Ehrmann et al.,
2014), WordNet (Fellbaum, 1998), UMLS). Mirror-
BERT, however, does not rely on any external data
to construct the positive examples.

In a nutshell, given a set of non-duplicated
strings X', we assign individual labels to each string
and build a dataset D = {(z;,y;)|v; € X,y; €
{1,...,]X|}}. We then create self-duplicated
training data D’ simply by repeating every ele-
ment in D. In other words, let X = {x1,z9,...}.
We then have D = {(x1,v1), (2,¥2),...} and
D = {(@1,91), (@1, 91)s (22, 92), (T2, 72), - - -}
where 1 = Z1,y1 = Y1, 22 = T2,Y2 = Yg,-... In
§2.2, we introduce data augmentation techniques
(in both input space and feature space) applied on
D'. Each positive pair (x;, T;) yields two different
points/vectors in the encoder’s representation space
(see again Fig. 1), and the distance between these
points should be minimised.

2.2 Data Augmentation

We hypothesise that, applying certain corruption
techniques to (i) parts of texts or (ii) their repre-
sentations, or even (iii) doing both in combination
does little change to their semantics. We present
two ways to corrupt text to be fed into an MLM, as
illustrated in Fig. 1. First, we can directly erase or
mask parts of the input text. Second, we can erase



x1: Economist Paul Krugman mainly works on trade models.

x1: Econ [MASK] Paul Krugman mainly works on trade models.

Figure 2: An example of input data augmentation via
random masking.

(i.e., dropout) parts of their feature maps. Both
techniques are rather simple and intuitive intuitive:
(i) even when masking parts of an input sentence,
humans can usually reconstruct its semantics;' (ii)
dropping a small subset of neurons or represen-
tation dimensions, the representations of a neural
network will not drift too much.

Input Augmentation: Random Masking. The
idea of random masking of a small portion of input
text is inspired by random cropping in visual rep-
resentation learning (Hendrycks et al., 2020). In
particular, starting from the mirrored pairs (z;, y;)
and (7;,7;), we randomly replace a consecutive
string of length k& with [MASK] in one of the x;-s
The example (Fig. 2) illustrates the random mask-
ing procedure with k = 5.2

Feature Augmentation: Dropout. The random
masking technique operating directly on text in-
put can be applied only with sentence/phrase-level
input; word-level tasks involve only short strings,
usually represented as a single token under BERT’s
tokeniser. However, data augmentation in the fea-
ture space based on dropout, as introduced below,
can be applied to any input text.

Dropout (Srivastava et al., 2014) randomly drops
neurons from a neural network during training with
a certain probability p. In practice, it results in the
erasure of each element with a probability of p. It
has mostly been interpreted as implicitly bagging
a large number of neural networks which share pa-
rameters at test time (Bouthillier et al., 2016). How-
ever, here we take advantage of the dropout lay-
ers in BERT/RoBERTa to create augmented views
of the input text. Assuming no random masking,
given a pair of identical strings x; and Z;, their rep-
resentations in the embedding space slightly differ
due to the existence of multiple dropout layers in

!"This is also certified by the distributional semantics hy-
pothesis (Harris, 1954).

The recent work by Wu et al. (2020) has explored input
augmentation techniques for contrastive sentence represen-
tation learning. However, it is used mainly for improving
the masked language modelling objective during pretraining
language models from scratch. In comparison, our approach
offers lightweight transformation from existing MLMs to uni-
versal language encoders.
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Figure 3: As the same vector goes through the same
dropout layer separately, the outcomes are indepen-
dent. As a consequence, two identical strings fed to
BERT/RoBERTa two times will yield different repre-
sentations in the MLM embedding space.

the BERT/RoBERTa architecture (Fig. 3). The two
data points with distinct locations in the embedding
space can be seen as two augmented views of the
same text sequence. The dropout augmentations
are naturally a part of the BERT/RoBERTa net-
work. That is, no further actions need to be taken
to implement them.?

It is also possible to combine data augmentation
via random masking and dropout. We also evaluate
this combined data augmentation variant.

2.3 Contrastive Learning

Let f(-) denote the encoder model. Fine-tuning
the encoder then operates on the data constructed
in §2.2. Given a batch of data D'y, we leverage
the popular InfoNCE loss (Oord et al., 2018) to
cluster/attract the positive pairs together and push
away the negative pairs in the embedding space:

[Dy|

log exp(cos(f (i), f(Ti))/T) .
= LS oo fas)

z;eN;
o))

7 denotes a temperature parameter; N; denotes all
negatives of x;, which includes all z;, T; where ¢ #
j in the current data batch (i.e., [N;| = |Dy| — 2).
Intuitively, the numerator is the similarity of the
self-duplicated pair (positive) and the denomina-
tor is the sum of the similarities between x; and
all other strings besides ; (negatives). The loss
encourages the positive pairs to be relatively close
comparing to the negative ones.*

3Note that random masking is applied on only one side of
the positive pair while dropout is applied on all data points.

*We also experimented with another state-of-the-art con-
trastive learning scheme proposed by Liu et al. (2020). There,
hard triplet mining combined with multi-similarity loss (MS



3 Experimental Setup

Evaluation Tasks: Lexical. We evaluate on both
domain-general and domain-specific tasks: word
similarity and biomedical entity linking. For
the word similarity task, we rely on the Multi-
SimLex evaluation set (Vuli¢ et al., 2020a), which
contains human-elicited word similarity scores
for multiple languages. For biomedical entity
linking, we use NCBI-disease (NCBI) (Dogan
etal., 2014), BC5CDR-disease (BC5-d), BC5CDR-
chemical (BC5-c) (Li et al., 2016), AskAPatient
(Limsopatham and Collier, 2016) and COMETA
(stratified-general split, Basaldella et al. 2020) as
our evaluation datasets. The first three datasets are
in the scientific domain (i.e., the data have been ex-
tracted from scientific papers), while the latter two
are in the social media domain (i.e., extracted from
online forums discussing health-related topics). We
report Spearman’s rank correlation coefficients (p)
for word similarity; accuracy @1 /@5 is the evalua-
tion measure in biomedical entity linking tasks.

Evaluation Tasks: Sentence-Level. We use Se-
mEval 2012-2016 datasets (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (STS-
b) (Cer et al., 2017), SICK-Relatedness (SICK-R)
(Marelli et al., 2014) for English; STS SemEval-
17 data is used for Spanish and Arabic (Cer et al.,
2017), and we also evaluate on Russian using a
dataset available online.> We again report Spear-
man’s p rank correlation.

Mirror-BERT: Training Resources. For (general-
domain) word-level representations, we use the
top 10k® most frequent words in each language.’
For biomedical name representations, we randomly
sample 10k names from the UMLS. For sentence-
level English tasks, we sample 10k sentences (with-
out labels) from the training set of the STS Bench-
mark; for Spanish, Arabic and Russian, we sam-
ple 10k sentences from the WikiMatrix dataset
(Schwenk et al., 2019).

Training Setup and Details. The hyperparame-
ters of word-level models are tuned on SimLex-999
(Hill et al., 2015); biomedical models are tuned

loss) is used as the learning objective. InfoNCE and triplet
mining + MS loss work mostly on par, with slight gains of
one variant in some tasks, and vice versa. For simplicity and
brevity, we report the results only with InfoNCE.

Sgithub.com/deepmipt /deepPavlovEval

We tested 1k, 10k, 20k, 50k and 100k and found 10k/20k
works better than the other values (see Fig. 4).

"nttps://github.com/oprogramador/
most—-common-words—by-language

model en et ar zh ru es pl
fastText 434 447 409 428 435 488 .396

MONO-BERT-CLS .105 .160 .210 .277 .177 .152 .257
MONO-BERT-mt .267 .106 .220 .398 .202 .177 .217

+ Mirror 556 .308 .538 .639 .365 .296 444
mBERT-CLS .062 .074 .047 .204 .063 .039 .051
mBERT-mt 105 .094 .101 .261 .109 .095 .087

+ Mirror 358 .134 .097 .501 .210 .332 .141

Table 1: Word similarity evaluation on Multi-SimLex
(Spearman’s p). “MONO” denotes monolingual mod-
els (a complete listing of used monolingual MLMs can
be found in App. §A). “mBERT” denotes multilingual
BERT. “mt” denotes using mean-pooling of represen-
tations of all output tokens while “CLS” means using
the [CLS] token’s representation. Bold and underline
denote highest and second highest scores per column.

scientific language social media language

NCBI BC5-d BC5-c  AskAPatient COMETA
model

@l @5 @1 @ @1 @5 @1 @5 @l @5
SapBERT 920 .956 .935 960 .965 982 .705 .889 .659 .779

PubMedBERT .778 .869 .890 .938 .930 .946 .425 .496  .468 .532

+ Mirror 909 .948 930 .962 .958 .979 .590 .750 .603 .713

Table 2: Biomedical entity linking evaluations in the
scientific and social media domain.

on COMETA (zeros-shot-general split). Sentence-
level models are tuned on the development set of
STS-b. The 7 in Eq. (1) is 0.04 for biomedical
phrase-level and all sentence-level models; 0.2 for
other word-level models. All models use a dropout
rate (p) of 0.1. Sentence-level models use a ran-
dom masking rate of k = 5, while we set k = 2 for
biomedical phrase-level models, and we do not em-
ploy random masking for word-level models. All
lexical models are trained for 2 epochs with a maxi-
mum token length of 25. All sentence-level models
are trained for 1 epoch with a max sequence length
of 50.

All models use AdamW (Loshchilov and Hut-
ter, 2019) as the optimiser, with a learning rate
of 2e — 5, batch size of 200 (400 after duplica-
tion). If not stated otherwise, for lexical-level tasks,
all models use [CLS] as the representation token;
for sentence-level tasks, RoBERTa-based models
use [CLS] while BERT-based models use mean-
pooling performed over the last layer’s output.


github.com/deepmipt/deepPavlovEval
https://github.com/oprogramador/most-common-words-by-language
https://github.com/oprogramador/most-common-words-by-language

model STSI12 STSI13 STS14 STSIS STS16 STS-b SICK-R Avg.
Sentence-BERT 719 774 742 799 47 774 721 754
BERT-CLS 215 321 213 379 442 203 427 314
BERT-mt 314 536 433 582 596 464 528 493

“+Mirror 674 796 713 814 743 764 703 744
RoBERTa-CLS ~ .090 327 210 338 388 317 355 289

. RoBERTa-mt _ _ .134 126 _ .124 = 203 _ 224 _ .129 = 320  .180
+ Mirror 648" T 819 T 7327 T 798 T 7800 .87 706 ~ .753

Table 3: English STS evaluations. Spearman’s p correlation is reported.

model Spanish Arabic Russian

MONO-BERT-CLS .526  .308  .470
MONO-BERT-mt 599 455 552

+ Mirror .709 .669 .673
mBERT-CLS 421 326 430
mBERT-mt 610 447 616
+ Mirror 755 594 692

Table 4: Spanish, Arabic and Russian STS evaluation.
Spearman’s p correlation reported.

4 Results and Discussion

4.1 Lexical-Level Tasks

Word Similarity (Tab. 1). In prior work it has
been shown that SotA static word embeddings such
as fastText (Mikolov et al., 2018) still typically
outperform off-the-shelf MLMs on word similar-
ity datasets (Vuli¢ et al., 2020a). However, our
results demonstrate that the Mirror-BERT proce-
dure indeed converts the MLMs into much stronger
word-level encoders. The Multi-SimLex results on
7 languages from Tab. 1® suggest that the + Mirror
variant substantially improves the performance of
base MLMs (both monolingual and multilingual
ones), even beating fastText in 4 out of the 7 evalu-
ation languages.

We also observe that it is essential to have a
strong base MLM. While Mirror-BERT does offer
substantial performance gains with all base MLMs,
the improvement is more pronounced when the
base model is strong (e.g., en, zh).

Biomedical Entity Linking (Tab. 2). The goal
of the biomedical entity linking (BEL) task is to
map a biomedical name mention to a controlled
vocabulary (usually a node in a knowledge graph).
While it is considered a downstream application
in BioNLP, the BEL task also helps evaluate and

8Language codes: en (English), et (Estonian), ar (Arabic),
zh (Chinese), ru (Russian), es (Spanish), pl (Polish).

compare the quality of biomedical name representa-
tions: it requires pairwise comparisons between the
biomedical mention and all surface strings stored
in the biomedical knowledge graph.

The results summarised in Tab. 2 suggest that
our + Mirror transformation achieves very strong
improvements on top of the base PubMedBERT
model (Gu et al., 2020). We note that PubMed-
BERT is a current SotA MLM in the biomedical
domain. On scientific datasets, the self-supervised
PubMedBERT + Mirror model is very close to
SapBERT, which fine-tunes PubMedBERT with
more than 10 million synonyms extracted from the
external UMLS knowledge base.

However, in the social media domain, PubMed-
BERT + Mirror still cannot match the performance
of the knowledge-guided SapBERT model. This
result in fact reflects the nature and complexity of
the task domain. For the three datasets in the scien-
tific domain (NCBI, BC5-d, BC5-c), strings with
similar surface forms tend to be associated with
the same concept. On the other hand, in the social
media domain, semantics of very different surface
strings might be the same (e.g. HCQ and Plaquenil
refer to exactly the same concept on online health
forums: Hydroxychloroquine). This also suggests
that the Mirror-BERT approach adapts PubMed-
BERT to a very good surface-form encoder for
biomedical names, but dealing with more difficult
synonymy relations (e.g. as found in the social
media) does need external knowledge injection.

4.2 Sentence-Level Tasks

Similar to our lexical-level experiments in §4.1,
Mirror-BERT also obtains large gains over the base
MLMs in sentence similarity tasks. We break down
the results into English STS (where we have a di-
rect comparison with Sentence-BERT) and Span-
ish, Arabic, Russian STS.

English STS (Tab. 3). Regardless of the base



model (BERT/RoBERTa), applying the + Mirror
fine-tuning greatly boosts performance across all
English STS datasets. Surprisingly, on average,
RoBERTa + Mirror, fine-tuned with only 10k sen-
tences without any external supervision, is on-par
with the Sentence-BERT model, which is trained
on the merged SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets, contain-
ing 570k and 430k sentence pairs, respectively.

Spanish, Arabic and Russian STS (Tab. 4). In
order to evaluate if the proposed data augmentation
techniques, especially random masking, can gener-
alise to other languages (and to different scripts),
we also test sentence representations with Mirror-
BERT in Spanish, Arabic and Russian. The results
in the STS tasks again indicate very large gains
for all languages, which all have different scripts,
using both monolingual language-specific BERT's
and multilingual BERT as base MLMs.

4.3 Further Discussion

Running Time. The Mirror-BERT procedure is
extremely time-efficient. While fine-tuning on NLI
(Sentence-BERT) or UMLS (SapBERT) data can
take hours, Mirror-BERT with 10k positive pairs
completes the conversion from MLMs to universal
language encoders within a minute on two NVIDIA
RTX 2080Ti GPUs. On average 15-20 seconds is
needed for 1 epoch of the Mirror-BERT procedure.

Input Data Size (Fig. 4). In our main experiments
in §4.1 and §4.2, we always use 10k examples
for Mirror-BERT tuning. In order to assess the
importance of the fine-tuning data size, we also
run an analysis with other data sizes for a sub-
set of base MLMs, and on a subset of English
tasks. In particular, we evaluate the following: (i)
BERT, Multi-SimLex (word-level); (ii) PubMed-
BERT, COMETA (biomedical phrase-level); (iii)
RoBERTa, STS12 (sentence-level). The results in
Fig. 4 mainly suggest that the performance in all
tasks reach their peak with around 10k and 20k
examples and then gradually decrease. The word-
level performance exhibits a steeper drop. We
suspect that this is due to the inclusion of lower-
frequency words into the fine-tuning data: embed-
dings of such words typically obtain less reliable
embeddings (Pilehvar et al., 2018).°

°For word-level experiments, we used the top 100k words
in English according to Wikipedia statistics. For phrase-level
experiments, we randomly sampled 100k names from UMLS.

For sentence-level experiments we sampled 100k sentences
from SNLI and MultiNLI datasets (as the STS training set has

0.60
0.55
g
3 0.50
& task
0.45 e word similarity
biomedical entity linking
0.40 e sentence similarity
1k 10k 20k 50k 100k
input size

Figure 4: The impact of the number of fine-tuning “mir-
rored” examples (x-axis) on the task performance (y-
axis). Note that the scores across tasks are not directly
comparable. Word and sentence similarity tasks scores
are Spearman’s p while the BEL scores are Acc@1.

Synergy between Random Masking and
Dropout (Tab. 5). We conduct our ablation
studies on the English STS tasks. First, we
experiment with turning off dropout, random
masking, or both. With both techniques turned
off, we observe large performance drops of both
BERT + Mirror and RoBERTa + Mirror. Random
masking appears to be the more important factor:
its absence causes a larger decrease. However, the
best performance is achieved when both dropout
and random masking are leveraged, suggesting
a synergistic effect when the two augmentation
techniques are used together.

Regularisation or Augmentation? (Tab. 6).
When using dropout, is it possible that we are
simply observing the effect of adding/removing
regularisation instead of the augmentation bene-
fit? To answer this question, we design a more
rigorous probing experiment that disentangles the
effect of regularisation versus augmentation; we
turn off random masking but leave the dropout on
(so that the regularisation effect remains). How-
ever, instead of assigning independent dropouts to
every individual string (rendering each individual
string slightly different), we control the dropouts
applied to a positive pair to be identical. As a
result, f(z;) = f(Z),Vi € {1,---,|D|} in this ex-
periment. We denote this as “controlled dropout”.

In Tab. 6, we observe that, during the + Mirror
fine-tuning, controlled dropout largely underper-
forms standard dropout and is even worse than not
using dropout at all. As the only difference be-
tween controlled dropout and standard dropout is

fewer than 100k sentences).



model

STS12 STS13 STS14 STS15 STS16 STS-b SICK-R  Avg.

BERT + Mirror 674 796 713 814 743 764 703 144

- dropout 646 770 691 .800 726 .745 701 726, 018
- random masking 641 775 684 777 737 749 .658 717, 027
- dropout & random masking .587 .695 617 688 .683 .674 .614 .651,.093
RoBERTa + Mirror 648 819 732 798 780 787  .706 153

- dropout 619 795 706 802 777 727 .698 732} .021
- random masking 616 786 689 766 743 756  .663 717036
- dropout & random masking .562 730 .643 744 752 708 638 .682, 071

Table 5: The synergistic effect of dropout and random masking in sentence similarity tasks.

model configuration pon STS12
random masking X; dropout X' -~ _ 62
random masking X; dropout v/ 648+ .036

random masking X; controlled dropout v 452, 119

Table 6: Probing the impact of dropout in a controlled
experiment. English STS12 with RoBERTa + Mirror.

the augmented features for positive pairs in the lat-
ter case, this suggests that the improvement from
+ Mirror indeed stems from the data augmentation
effect rather than from regularisation.

Learning from Negatives Only is Still Beneficial
(Tab. 5). Interestingly, our ablation results Tab. 5
also indicate that Mirror-BERT substantially im-
proves the base MLMs even without any positive
examples, that is, even when both random masking
and dropout are not used.! However, introduc-
ing positive examples naturally yields stronger task
performance.

Learning New Knowledge or Exposing Avail-
able Knowledge? We find that running Mirror-
BERT for more epochs, or with more data (see
Fig. 4) does not lead to performance gains. This
suggests that, instead of gaining new knowledge
from the fine-tuning data, Mirror-BERT is more
likely to be rewiring existing knowledge in MLMs.
The experiments in the BEL task also point in
the same direction: with social media data where
medical terminology varies more than in the more
rigorous scientific domain, the performance gap
between Mirror-BERT and the UMLS-tuned Sap-
BERT is still large. Motivated by these insights,
in future work we also plan to experiment with a
combined approach that blends Mirror-BERT and

1ONote that in this case, it always holds x; = 7; and
f(xz;) = f(z). During training, this leads the numerator
in Eq. (1) to be a constant. The learning collapses to the
scenario where all gradients solely come from the negatives.

external knowledge.

5 Conclusion

We have proposed Mirror-BERT, a simple, self-
supervised, and highly effective approach that trans-
forms large pretrained masked language models
(MLMs) into universal lexical and sentence en-
coders within a minute, and without any external
supervision. Mirror-BERT, based on simple un-
supervised data augmentation techniques, demon-
strates surprisingly strong performance in (word-
level and sentence-level) semantic similarity tasks,
as well as on biomedical entity linking. The large
gains over base MLMs are observed for different
languages with different scripts, and across diverse
domains. Moreover, we analyse the main causes
of the method’s success, and identify that both
random masking and dropout-based augmentation
techniques contribute to its efficacy, yielding a syn-
ergistic effect.
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A complete listing of URLSs for all used pretrained
encoders is provided in Tab. 7. For monolingual
MLMs of each language, we made the best effort
to select the most popular one (based on download
counts). All models are Base models (instead of
Large).
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model URL

fastText https:
Sentence-BERT https:
SapBERT https:

BERT (English) https:
RoBERTa (English) https:
mBERT https:
Spanish BERT https:

Russian BERT https:
Chinese BERT https:
Arabic BERT https:
Polish BERT https:

Estonian BERT https:

//fasttext.cc/docs/en/crawl-vectors.html

//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.

co/sentence-transformers/bert-base-nli-mean-tokens
co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
co/bert-base—-uncased

co/roberta-base
co/bert-base-multilingual-uncased
co/dccuchile/bert-base-spanish-wwm-uncased
co/DeepPavlov/rubert-base-cased
co/bert-base—-chinese
co/aubmindlab/bert-base-arabertv02
co/dkleczek/bert-base-polish-uncased-vl
co/tartuNLP/EstBERT

Table 7: A listing of HuggingFace & fastText URLs of all pretrained models used in this work.
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