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Abstract

Injecting external domain-specific knowledge
(e.g., UMLYS) into pretrained language models
(LMs) advances their capability to handle spe-
cialised in-domain tasks such as biomedical
entity linking (BEL). However, such abundant
expert knowledge is available only for a hand-
ful of languages (e.g., English). In this work,
by proposing a novel cross-lingual biomedical
entity linking task (XL-BEL) and establishing a
new XL-BEL benchmark spanning 10 typolog-
ically diverse languages, we first investigate
the ability of standard knowledge-agnostic
as well as knowledge-enhanced monolingual
and multilingual LMs beyond the standard
monolingual English BEL task. The scores
indicate large gaps to English performance.
We then address the challenge of transfer-
ring domain-specific knowledge in resource-
rich languages to resource-poor ones. To this
end, we propose and evaluate a series of cross-
lingual transfer methods for the XL-BEL task,
and demonstrate that general-domain bitext
helps propagate the available English knowl-
edge to languages with little to no in-domain
data. Remarkably, we show that our proposed
domain-specific transfer methods yield consis-
tent gains across all target languages, some-
times up to 20 Precision@1 points, without any
in-domain knowledge in the target language,
and without any in-domain parallel data.

1 Introduction

Recent work has demonstrated that it is possible
to combine the strength of 1) Transformed-based
encoders such as BERT (Devlin et al., 2019; Liu
et al., 2019), pretrained on large general-domain
data with 2) external linguistic and world knowl-
edge (Zhang et al., 2019; Levine et al., 2020;
Lauscher et al., 2020). Such expert human-curated
knowledge is crucial for NLP applications in spe-
cialised domains such as biomedicine. There, Liu
et al. (2020) recently proposed SAP, a technique

to fine-tune BERT on phrase-level synonyms ex-
tracted from the Unified Medical Language Sys-
tem (UMLS, Bodenreider 2004)." Their SAPBERT
model currently holds state-of-the-art (SotA) across
all major English biomedical entity linking (BEL)
datasets. However, this approach is not widely
applicable to other languages: abundant external
resources are available only for a few languages,
hindering the development of domain-specific NLP
models in all other languages.

Simultaneously, exciting breakthroughs in cross-
lingual transfer for language understanding tasks
have been achieved (Artetxe and Schwenk, 2019;
Hu et al., 2020). However, it remains unclear
whether such transfer techniques can be used to
improve domain-specific NLP applications and mit-
igate the gap between knowledge-enhanced models
in resource-rich versus resource-poor languages. In
this paper, we thus investigate the current perfor-
mance gaps in the BEL task beyond English, and
propose several cross-lingual transfer techniques
to improve domain-specialised representations and
BEL in resource-lean languages.

In particular, we first present a novel cross-
lingual BEL (XL-BEL) task and its correspond-
ing evaluation benchmark in 10 typologically di-
verse languages, which aims to map biomedical
names/mentions in any language to the controlled
UMLS vocabulary. After empirically highlight-
ing the deficiencies of multilingual encoders (e.g,
MBERT and XLMR (Conneau et al., 2020)) on
XL-BEL, we propose and evaluate a multilingual
extension of the SAP technique. Our main results
suggest that expert knowledge can be transferred
from English to resource-leaner languages, yield-
ing huge gains over vanilla MBERT and XLMR
and English-only SAPBERT. We also show that
leveraging general-domain word and phrase trans-

"UMLS is a large-scale biomedical knowledge graph con-
taining more than 14M biomedical entity names.



lations offers substantial gains in the XL-BEL task.

Contributions. 1) We highlight the challenge of
learning (biomedical) domain-specialised cross-
lingual representations. 2) We propose a novel mul-
tilingual XL-BEL task with a comprehensive evalu-
ation benchmark in 10 languages. 3) We offer sys-
tematic evaluations of existing knowledge-agnostic
and knowledge-enhanced monolingual and multi-
lingual LMs in the XL-BEL task. 4) We present a
new SotA multilingual encoder in the biomedical
domain, which yields large gains in XL-BEL espe-
cially on resource-poor languages, and provides
strong benchmarking results to guide future work.

2 Methodology

Background and Related Work. Learning
biomedical entity representations is at the core of
BioNLP, benefiting, e.g., relational knowledge dis-
covery (Wang et al., 2018) and literature search
(Lee et al., 2016). In the current era of contex-
tualized representations based on Transformer ar-
chitectures (Vaswani et al., 2017), biomedical text
encoders are pretrained via Masked Language Mod-
eling (MLM) on diverse biomedical texts such
as PubMed articles (Lee et al., 2020; Gu et al.,
2020), clinical notes (Peng et al., 2019; Alsentzer
et al., 2019), and even online health forum posts
(Basaldella et al., 2020). However, it has been
empirically verified that naively applying MLM-
pretrained models as entity encoders does not per-
form well in tasks such as biomedical entity link-
ing (Basaldella et al., 2020; Sung et al., 2020).
Recently, Liu et al. (2020) proposed SAP (Self-
Alignment Pretraning), a fine-tuning method that
leverages synonymy sets extracted from UMLS to
improve BERT’s ability to act as a biomedical entity
encoder. Their SAPBERT model currently achieves
SotA scores on all major English BEL benchmarks.

In what follows, we first outline the SAP proce-
dure, and then discuss the extension of the method
to include multilingual UMLS synonyms (§2.1),
and then introduce another SAP extension which
combines domain-specific synonyms with general-
domain translation data (§2.2).

2.1 Language-Agnostic SAP

Let (z,y) € X x ) denote the tuple of a name and
its categorical label. When learning from UMLS
synonyms, X x ) is the set of all (name, CUI*)
pairs, e.g., (vaccination, C0042196). While Liu

’In UMLS, “CUI” means Concept Unique Identifier.

et al. (2020) use only English names, we here con-
sider names in other UMLS languages. During
training, the model is steered to create similar rep-
resentations for synonyms regardless of their lan-
guage.® The learning scheme includes 1) an online
sampling procedure to select training examples and
2) a metric learning loss that encourages strings
sharing the CUI to obtain similar representations.

Training Examples. Given a mini-batch of /V ex-
amples B = X x Vg = {(zi,y:)}},, we start
from constructing all possible triplets for all names
x; € Xp. Each triplet is in the form of (z4, z}, zp)
where z, is the anchor, an arbitrary name from Xg;
xp 1s a positive match of z, (i.e., yo = yp) and x,,
is a negative match of z, (i.e., yo # yn)- Let f(-)
denote the encoder (i.e., MBERT or XLMR in this
paper). Among the constructed triplets, we select
all triplets that satisfy the following constraint:

1 (@a) = flap)lle > 1 f(2a) = flan)ll2 + A,

where A is a predefined margin. Every selected
triplet then contributes one positive pair (24, zp)
and one negative pair (x,, x,,). We collect all such
positives and negatives, and denote them as P, N.

Multi-Similarity Loss. We compute the pairwise
cosine similarity of all the name representations
and obtain a similarity matrix S € RI¥8/x|¥sl
where each entry S;; is the cosine similarity be-
tween the ¢-th and j-th names in the mini-batch B.
The Multi-Similarity loss (MS, Wang et al. 2019),
is then used for learning from the triplets:
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«, 3 are temperature scales; € is an offset applied on
the similarity matrix; P;, V; are indices of positive
and negative samples of the i-th anchor.

2.2 SAP with General-Domain Bitext

We also convert word and phrase translations into
the same format (§2.1), where each ‘class’ now
contains only two examples. For a translation pair
(wp, z4), we create a unique pseudolabel ¥, .-, and
produce two new name-label instances (2, ¥z, z,)
and (24, Yz, .z, ), and proceed as in §2.1. This al-
lows us to easily combine domain-specific knowl-
edge with general translation knowledge.

3For instance, vaccination (EN), active immunization (EN),

vacunacién (ES) and T-ff{%fE (7a) all share the same CUI
(C0042196); thus, they should all have similar representations.



3 The XL-BEL Task and Evaluation Data

A general cross-lingual entity linking (EL) task
(McNamee et al., 2011; Tsai and Roth, 2016) aims
to map a mention of an entity in free text of any lan-
guage to a controlled English vocabulary, typically
obtained from a knowledge graph (KG). In this
work, we propose XL-BEL, a cross-lingual biomed-
ical EL task. Instead of grounding entity mentions
to English-specific ontologies, we use UMLS as a
language-agnostic KG: the XL-BEL task requires
a model to associate a mention in any language
to a (language-agnostic) CUI in UMLS. XL-BEL
thus serves as an ideal evaluation benchmark for
biomedical entity representations: it challenges the
capability of representing domain entities and also
associates entity names in different languages.

Evaluation Data Creation. For English, we take
the available BEL dataset WikiMed (Vashishth
et al., 2020), which links Wikipedia mentions to
UMLS CUIs. We then follow similar procedures as
WikiMed and create a XL-BEL benchmark covering
10 languages (see Tab. 1). For each language, we
extract all sentences from their Wikipedia dump,
and then find all hyperlinked concepts (i.e., words
and phrases), lookup their Wikipedia pages, and
retain only concepts that are linked to UMLS.* For
these UMLS-linked mentions, we add a triplet (sen-
tence, mention, CUI) to our dataset.” We then filter
out examples with mentions that have the same sur-
face form as their Wikipedia article page.® Further,
only one example per surface form is retrained to
ensure diversity. Finally, 1k examples are randomly
selected for each language: they serve as the final
test sets in our XL-BEL benchmark. The statistics
of the benchmark are available in the App. §A.1.

4 Experiments and Results

UMLS Data. We rely on the UMLS (2020AA)
as our SAP fine-tuning data, leveraging synonyms

“For instance, given a sentence from German Wikipedia
Die [Inkubationszeit] von COVID-19 betrigt durchschnit-
tlich fiinf bis sechs Tage., we extract the hyperlinked word
Inkubationszeit as an UMLS-linked entity mention. Since
Wikipedia is inherently multilingual, if Inkubationszeit is
linked to UMLS, its cross-lingual counterparts, e.g., Incu-
bation period (EN), are all transitively linked to UMLS.

SNote that though each mention is accompanied with its
context, we regard it as out-of-context mention following the
tradition in prior work (Sung et al., 2020; Liu et al., 2020;
Tutubalina et al., 2020). According to Basaldella et al. (2020),
biomedical entity representations can be easily polluted by its
context. We leave contextual modeling for future work.

SOtherwise, the problem is easily solved by comparing
surface forms of the mention and the article title.

in all available languages. The full multilingual
fine-tuning data comprises ~~15M biomedical en-
tity names associated with ~4.2M individual CUIs.
As expected, English is dominant (69.6% of all
15M names), followed by Spanish (10.7%) and
French (2.2%). The full stats are in App. §A.2.

Translation Data. We use (a) “muse” word trans-
lations (Lample et al., 2018), and (b) the parallel
Wikipedia article titles (phrase-level translations;
referred to as “wt”). We also list results when using
“muse” and “wt” combined (“muse+wt”).

Training and Evaluation Details. Our SAP fine-
tuning largely follows Liu et al. (2020); we refer to
the original work and the Appendix for further tech-
nical details. The evaluation measure is standard
Precision@1 and Precision@5. In all experiments,
SAP always denotes fine-tuning of a base LM with
UMLS data. [CLS] of the last layer’s output is
used as the final representation (Liu et al., 2020).
We use the BASE variants of all monolingual and
multilingual LMs. At inference, given a query rep-
resentation, a nearest neighbour search is used to
rank all candidates’ representations. We restrict the
target ontology to only include CUIs that appear in
WikiMed (62,531 CUIs, 399,931 entity names).

4.1 Main Results and Discussion

Multilingual UMLS Knowledge Always Helps.
Tab. 1 summarises the results of applying multilin-
gual SAP fine-tuning based on UMLS knowledge
on a wide variety of monolingual, multilingual, and
in-domain pretrained encoders. Injecting UMLS
knowledge is consistently beneficial to the mod-
els’ performance on XL-BEL across all languages
and across all base encoders. Using multilingual
UMLS synonyms to SAP-fine-tune the biomedical
PUBMEDBERT instead of English-only synonyms
improves its performance across the board. SAP-
ing monolingual BERTs for each language also
yields substantial gains across all languages; the
only exception is Thai, which is not represented in
UMLS. Fine-tuning multilingual models MBERT
and XLMR leads to even larger relative gains.

Performance across Languages. UMLS data is
heavily biased towards Romance and Germanic
languages. As a result, for languages more similar
to these families, monolingual LMs (upper half,
Tab. 1) are on par or outperform multilingual LMs
(lower half, Tab. 1). However, for other (distant)
languages (e.g., KO, ZH, JA, TH), the opposite holds.
For instance, on TH, XLMR+SAP, sy, outper-



language— EN ES DE FI RU TR KO ZH JA TH avg
model| @] @5 @] @5 @] @5 @] @5 @] @5 @] @5 @] @5 @ @5 @] @5 @] @5 @] @5
SAPBERT (Liu et al., 2020) 78.7 81.6 47.3 514 227247 82 102 58 6.0 264297 20 24 19 22 3.0 32 3.1 34 199216
SAPBERT,|| syn 78.3 80.7 55.6 61.3 30.0342 11.8148 93 11.3 355395 20 24 64 82 69 83 30 33 239264
YSLANGJBERT ~ ~ ~ -7 T T4134257 168184 49 527 1.0 T6 T19521.8 "1.1 1.6 21 32 “27 728 04 04 10.010.8
$SLANG } BERT+SAP1yn - - 60.9 668 35.540.0 18.8239 364424 449497 135160 185238 212259 06 0.6 27.832.1
MBERT 08 17 05 07 03 04 04 08 00 00 07 12 00 00 00 00 00 0.1 00 00 03 05
MBERT+S APen_syn 75,5799 50.6 55.8 26.029.6 87 10.7 10.1 12.6 31.0344 27 32 41 57 47 59 31 35 21.724.1
MBERT+SAPa1syn 75.0 79.7 61.4 67.0 33.437.8 184219 35.1403 445477 15.117.6 195227 199250 28 34 325363
XLMR™ 1.0 20 03707 00 01 0.1 02~ 0.f 0.2 04 05 00 03 01702 0270400 0.1 0.2 05
XLMR+SAPe_syn 78.1 80.9 479535 27.6320 122147 218259 293359 45 6.7 79 11.3 83 113 115162 249 288
XLMR+S AP syn 78.2 81.0 564627 31.8373 18.6222 354412 428489 16.7214 18.823.0 24.028.1 20.6 27.5 34.3 39.3

Table 1:

Various base models applied with SAP using either all synonyms (all_syn) or only English synonyms

(en_syn) in UMLS. {SLANG} denotes the language of the corresponding column (also in Tab. 3). See Tab. 5
(App. §A.2) for the language codes. avg refers to the average performance across all target languages.

language— ES DE FI RU TR KO ZH JA TH avg
model @l @5 @l @5 @l @5 @l @5 @l @5 @l @5 el @5 el @5 el @5 @l @5
XLMR+SAPen gyn 479535 27.632.0 122 147 218259 293359 45 67 79 113 83 113 115162 19.0 23.1
"XLMR+SAPcn oyn(+en-{SLANG} wt)  — ~ 55.0 62.2° 34.6 414 " 18.6 244" 350 41.5 433506 159 22.3 159 230 187244 251 324 2917358 "
XLMR+SAPe n(+en-{SLANG} muse) ~ 54.4 61.0 287 344 167206 336390 419488 119163 123 167 157 199 186251 260313
XLMR+SAPen qyn(+en-{SLANG } wismuse) 49.4 59.6 30.3 369 204 289 332419 427517 161223 160229 178243 262340 2803538
XLMR+SAPyign 564627 318373 186222 354412 428489 167214 188230 240281 206275 295347
XLMR+SAP 1 oyn(+en-[SLANG]} i) 572637 351423 203276 358 438 4887350 22.027.9 2056 273 248313 30.0 37.6 327396
XLMR+SAPy yn(+en-{SLANG} muse) ~ 57.9 63.9 33.0 384 230273 398459 472545 221257 192256 252302 259328 326383
XLMR+SAPygn(+en-{SLANG} muse+wt) 51.4 612 31.3 389 228 284 364 452 422516 244292 211282 232304 309 379 315 390
MBERT+SAPa1 syn 614 670 334 378 184 219 35.1 403 445 477 15.1 176 195 227 199250 28 34 278 315
"MBERT+SAPy syn(+en-{SLANG} wt) ~ ~ 59.2°66.9 37.5 439 ~25.6 33.0 39.6 47.2 527397 19.87243 241 319 235287 48 59 319379"
MBERT+SAPy gn(+en-{SLANG} muse) ~ 59.9 662 34.3 388 21.627.5 365417 510567 181212 222264 220255 34 38 292342
MBERT+S APy qyn(+en-{SLANG} muse+wt) 59.2 67.5 353 424 30.5 37.3 41.6 492 57.2 647 198250 24.6 321 243280 52 63 331392
Table 2: Results when applying SAP with 1) UMLS knowledge + 2) word and/or phrase translations.
forms THBERT+S APy syn by 20% Precision@1. language— ES DE__RU KO aw
model, @l @5 @l @5 @l @ @l @5 @1 @5
General Translation Knowledge is Useful.  vBerr+Sape, 50.655.8 26.029.6 101126 2.7 32 224253
. . MBERT+SAP (s AN} oyn  57.162.8 2893316 258317 2.1 2.6 285327
Tab. 2 summarises the results where we continue MBERT+SAPens (SLANG} ayn 6.1 68.5 35.239.8 35.640.9 144163 36.641.4
.. . MBERT+S APy syn 61.467.0 33.437.8 35.140.3 15.117.6 36.640.7
training on general translation data (§2.2) after the
) ) ) g XLMR+SAPen gyn 47.953.5 27.632.0 21.825.9 45 6.7 255295
previous UMLS-based SAP. With this variant, base XLMR+SAP(sianG}ayn 52.955.8 25.930.4 287342 2.4 2.9 245308
- n XLMR+S AP, (sLANG} syn 55-862.5 27.732.3 36.442.2 15.819.8 33.939.2
multlhngual LMs become powerful multlhngual XLMR+SAPy1_syn 56.462.7 31.837.3 354412 16.721.4 35.140.7

biomedical experts. We observe additional strong
gains (cf., Tab. 1) with out-of-domain translation
data: e.g., for MBERT the gains range from 2.4% to
12.7% on all languages except ES. For XLMR, we
report Precision@1 boosts of >10% on RU, TR, KO,
TH with XLMR+SAPe;_syn, and similar but smaller
gains also with XLMR+S AP gyn.

Table 3: Varying UMLS synonymy sets.

knowledge (even in non-related languages) ben-
efit cross-lingual transfer. However, for MBERT
(Tab. 3, upper half), the trend is less clear, with
en+{$SLANG}_syn sometimes outperforming the
all_syn variant. Despite modest performance dif-
ferences, this suggests that the choice of source
languages for knowledge transfer also plays a role;
this warrants further investigations in future work.

We stress the case of TH, not covered in UMLS.
Precision@1 rises from 11.5% (XLMR+SAP¢;, syn)
to  30.9%M94%  (XLMR+SAPy syn(+en-th
muse+wt)), achieved through the synergistic effect
of both knowledge types: 1) UMLS synonyms in
other languages push the scores to 20.6%9-1%;
2) translation knowledge increases it further to
30.9%1103%_ In general, these results suggest
that both external in-domain knowledge and
general-domain translations boost the performance
in resource-poor languages.

5 Conclusion

We have introduced a novel cross-lingual biomed-
ical entity task (XL-BEL), establishing a wide-
coverage and reliable evaluation benchmark for
cross-lingual entity representations in the biomed-
ical domain in 10 languages, and have evaluated
current SotA biomedical entity representations on
XL-BEL. We have also presented an effective trans-
fer learning scheme that leverages general-domain
translations to improve the cross-lingual ability of
domain-specialised representation models.

The More the Better? According to Tab. 3 (lower
half), it holds almost universally that all_syn >
en+{$LANG}_syn > en_syn/{$LANG}_syn on
XLMR, that is, it seems that more in-domain
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A Appendix A

A.1 XL-BEL: Full Statistics

Tab. 4 summarises the key statistics of the XL-BEL
benchmark. It was extracted from the 20200601
version of Wikipedia dump. “sentences” refers to
the number of sentences that contain biomedical
mentions in the Wiki dump. “unique titles (Wiki
page)” denotes the number of unique Wikipedia
articles the biomedical mentions link to. “men-
tions” denotes the number of all biomedical men-
tions in the Wikipedia dump. “unique mentions”
refers to the number of mentions after filtering
out examples containing duplicated mention sur-
face forms. “unique mentionspention!=titte’ d€notes
the number of unique mentions that have surface
forms different from the Wikipedia articles they
link to. The 1k test sets for each language are then
randomly selected from the examples in “unique
mentionSmention!=title - L he test sets are uploaded as
a separate file. We will release the full dataset upon
acceptance.

A.2 UMLS Data Preparation

All our UMLS fine-tuning data for SAP is extracted
from the MRCONSO.RRF file downloaded at
https://www.nlm.nih.gov/research/umls/
licensedcontent/umlsarchives04.html#
2020aA. The extracted data includes 147,706,62
synonyms distributed in more than 20 languages.
The detailed statistics are available in Tab. 5.

A.3 Translation Data

The full statistics of the used word and phrase
translation data are listed in Tab. 6. The “muse”
word translations are downloaded from https://
github.com/facebookresearch/MUSE while the
Wikititle pairs (“wt”) are extracted by us own (we
will release the resource upon acceptance).

A.4 Pretrained Encoders

A complete listing of URLSs for all used pretrained
encoders hosted on huggingface. co is provided in
Tab. 7. For monolingual models of each language,
we made the best effort to select the most popular
one (based on download counts).

A.5 Future Work

Investigating Other Cross-Lingual Transfer
Learning Schemes. We also explored adapting
multilingual sentence representation transfer tech-
niques like Reimers and Gurevych (2020) that

leverage parallel data. However, we observed
no improvement comparing to the main transfer
scheme reported in the paper. We plan to inves-
tigate existing techniques more comprehensively,
and benchmark more results on XL-BEL in the fu-
ture.

Are Large Models (Cross-Lingual) Domain Ex-
perts? We also investigated the LARGE vari-
ants of XLMR, finding their performances to
be much better than BASE models. On En-
glish, all XLMR-LARGE variants can get >70%
Precision@1 (Tab. 8), being close to SAPBERT
(78.7%). However, their performance is still be-
low XLMR+SAP on other languages (still signifi-
cantly better than BASE models without SAP). In
the future, we plan to investigate rewiring the En-
glish domain knowledge contained in such LARGE
models to resource-poor languages.

Comparison with in-Domain Parallel Data.
While we used general-domain bitexts to cover
more resource-poor languages, we are aware that
in-domain bitexts exist among several “mainstream’
languages (EN, ZH, ES, PT, FR, DE, Bawden et al.
2019).7 1In the future, we plan to also compare
with biomedical term/sentence translations on these
languages to gain more insights on the impact of
domain-shift.

’

A.6 Number of Model Parameters

All BASE models have ~110M parameters while
LARGE models have ~340M parameters.

A.7 Hyperparameter Optimisation

Tab. 9 lists the hyperparameter search space. Note
that the chosen hyperparameters yield the overall
best performance, but might be suboptimal on any
single setting. We used the same random seed
across all experiments.

A.8 Software and Hardware Dependencies

All our experiments are implemented using Py-
Torch 1.7.0 with Automatic Mixed Precision
(AMP)? turned on. We will open-source the code
on GitHub upon acceptance. The hardware we
use is listed in Tab. 10. On this machine, the SAP
fine-tuning procedure generally takes 5-10 hours
with UMLS data. SAP fine-tuning with translation
data takes 10 minutes to 5 hours, depending on the

"http://www.statmt.org/wmt19/
biomedical-translation-task.html

$https://pytorch.org/docs/stable/amp.
html
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#], language— EN ES DE FI RU TR KO ZH JA TH

sentences - 223,506 350,193 77,736 206,060 29,473 47,702 136,054 157,670 19,066
unique titles (Wiki page) 60,598 37,935 24,059 15,182 21,044 5,251 10,618 17,972 11,002 4,541
mentions 1,067,083 204,253 431,781 105,182 221,383 29,958 60,979 197,317 220,452 31,177
unique mentions 121,669 25,169 44,390 26,184 28,302 4,110 9,032 24,825 21,949 5,064

unique mentionSmengont=ite 237,851 22,162 43,753 19,409 23,935 2,833 3,740 12,046 12,571 2,480

Table 4: Construction of the XL-BEL benchmark; key statistics.

code language # synonyms  percentage
EN English 10,277,246  69.6%
ES Spanish 1,575,109 10.7%
JA Japanese 329,333 2.2%
RU Russian 291,554 2.0%
DE German 231,098 1.6%
KO Korean 145,865 1.0%
ZH Chinese 80,602 0.5%
TR Turkish 51,328 0.3%
FI Finnish 24,767 0.2%
TH Thai 0 0.0%
"FR  French 428406 ~ 29%
PT Portuguese 309,448 2.1%
NL Dutch 290,415 2.0%
IT Ttalian 242,133 1.3%
Cs Czech 196,760 0.7%
NO Norwegian 63,075 0.4%
PL Polish 51,778 0.4%
ET Estonian 31,107 0.2%
SV Swedish 29,716 0.2%
HR Croatian 10,035 0.1%
EL Greek 2,281 <0.1%
LV Latvian 1,405 <0.1%
Total 147,706,62  100%

Table 5: The amount of UMLS synonyms per language.
The first 10 languages are included in our XL-BEL test
languages. However, note that Thai has no UMLS data.

amount of the data. Inference generally takes <10
minutes.



#i, 1anguage—> EN-ES EN-DE EN-FI EN-RU EN-TR EN-KO EN-ZH EN-JA EN-TH
muse 112,583 101,931 43,102 48,714 68,611 20,549 39,334 25,969 25,332
wt 1,079,547 1,241,104 338,284 886,760 260,392 319,492 638,900 547,923 107,398
Table 6: Statistics of muse word translations (“muse”) and Wikipedia title pairs (“wt”).

model URL

MBERT https://huggingface.co/bert-base-multilingual-uncased

XLMR https://huggingface.co/xlm-roberta-base

XLMR-LARGE https://huggingface.co/xlm-roberta-large

XLMR-LARGE-XNLI https://huggingface.co/joeddav/xlm-roberta-large—xnli

XLMR-LARGE-SQUAD2 https://huggingface.co/deepset/xlm-roberta-large—-squad2

SAPBERT https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext

ESBERT https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased

DEBERT https://huggingface.co/dbmdz/bert-base—german-uncased

FIBERT https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-vl

RUBERT https://huggingface.co/DeepPavlov/rubert-base-cased

TRBERT https://huggingface.co/loodos/bert-base-turkish-uncased

KRBERT https://huggingface.co/snunlp/KR-BERT-charl6424

ZHBERT https://huggingface.co/bert-base-chinese

JABERT https://huggingface.co/cl-tohoku/bert-base-japanese

THBERT https://huggingface.co/monsoon-nlp/bert-base-thai

Table 7: A listing of HuggingFace URLSs of all pretrained models used in this work.

language— EN ES DE FI RU TR KO ZH JA TH avg
model]. @] @5 @] @5 @] @5 @] @5 @] @5 @] @5 @] @5 @] @5 @] @5 @] @5 @] @5
SAPBERT (Liu et al., 2020) 78.7 81.6 47.3 514 227247 82 102 58 6.0 264297 20 24 19 22 30 32 3.1 34 199216
SAPBERTy| syn 78.3 80.7 55.661.3 30.0342 118148 93 113 355395 20 24 64 82 69 83 30 33 239204
XLMR 10 20 03 07 00 01 01 02 01 02 04 05 00 03 01 02 02 04 00 01 02 05
XLMR+SAPyj1_syn 782 81.0 56.4 62.7 31.8 37.3 18.6 22.2 354 41.2 42.8489 16.7 21.4 18.8 23.0 24.0 28.1 20.6 27.5 34.3 39.3
XLMR-LARGE 73.075.0 20.724.6 7.8 9.1 19 27 30 33 118135 12 12 07 09 16 1.8 09 12 123133
XLMR-LARGE-XNLI 72.675.1 30.1335 107122 34 46 59 74 164184 19 26 13 20 20 25 13 20 146160
XLMR-LARGE-SQUAD2 74.6 762 314353 119132 35 44 52 65 169192 14 15 06 09 18 21 20 23 149162

Table 8: A comparison of BASE (upper half) and LARGE (lower half) multilingual encoders on XL-BEL.

hyperparameters search space
pretraining learning rate 2e-5
pretraining batch size 512
pretraining training epochs 1
bitext fine-tuning learning rate 2e-5

bitext fine-tuning batch size
bitext fine-tuning epochs

{64, 128, 256"}
{1,2,3,4,5%, 10}

max_seq-length of BERT tokeniser 25
A in Online Mining 0.2
« in MS loss (Eq. (1)) 2
[ in MS loss (Eq. (1)) 50

€ in MS loss (Eq. (1)) 1

Table 9: Hyperparameters along with their search grid.
+* marks the values used to obtain the reported re-
sults. The hparams without any defied search grid are
adopted directly from Liu et al. (2020).

hardware specification
RAM 192 GB
CPU Intel Xeon W-2255 @3.70GHz, 10-core 20-threads

GPU

NVIDIA GeForce RTX 2080 Ti (11 GB) x 4

Table 10: Hardware specifications of the used machine.
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